Skip to main content

Posts

Featured Post

Water hammer and unsteady flows in pipes

             Ad: https://happyshirtsnp.com/                                                                             UNSTEADY FLOW IN PIPES When water is flowing through a pipe is suddenly stopped by the use of valve then we can see sudden rise in pressure inside the pipe and this pressure waves transmitted along the length of the pipe and it creates knocking like sound effects knows as 'water hammer'. In doing so, there are rapid pressure oscillation in the pipe, often accompanied by a hammering like sound, this phenomenon is called as 'Water hammer effect'. Sometimes the pressure may rise to the greater extent and may causes serious damage to the pipe. Therefore the 'water hammer' effects should be properly studied in the pipes. The magnitude of pressure rise depends on:   i)    Speed at which the valve is closed   (ii)     The velocity of flow (V) (iii)     The length of the pipe (L) (iv)      Elastic properties of pipe material (E) and flowing fluid (K).
Recent posts

THREE RESERVOIRS AND PIPE NETWORK PROBLEMS

 Ad: https://happyshirtsnp.com/         THREE RESERVOIRS PROBLEM AND PIPE NETWORK   In practice, several pipes are interconnected forming various loops (or circuit) in municipal water distribution systems. There are a number of pipes connected either in series or in parallel or a combination of both. A group of interconnected pipes forming several loops (or circuit) in complex manner is called pipe networks, The complexity in a pipe networking is to determine the solution Of pipe problem (flow distribution) in such pipe network. Branched pipes: Three Reservoirs Problem Fig: Branched pipes: three inter connected Reservoir     In water supply system, Often a number of reservoirs are required to be interconnected by means Of a pipe system consisting of a number of pipes namely main and branches which meet at a junction. Figure shows three reservoirs 'B' and 'C' are interconnected by pipes 'a', 'b' and 'c' which meet at a junction 'D'. In the